
Overview

The **ATM2802-Y** is a compact solution for AC basic charging leakage current sensor with analog output for leakage current indication.

Benefits

- Small size with fluxgate-based current sensor
- High resolution
- PCB mounting
- Conform to IEC62752:2016
- Conform to UL 2231-2
- RoHS compliant



Applications

Typical applications include residual current sensor for In-Cable Control and Protection Devices (IC-CPD) or Wallbox.

Dimensions

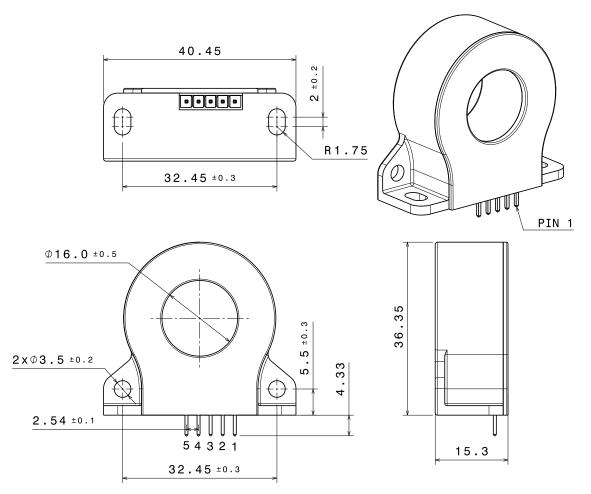


Figure 1: Module dimensions (unit: mm)

PCB Footprint

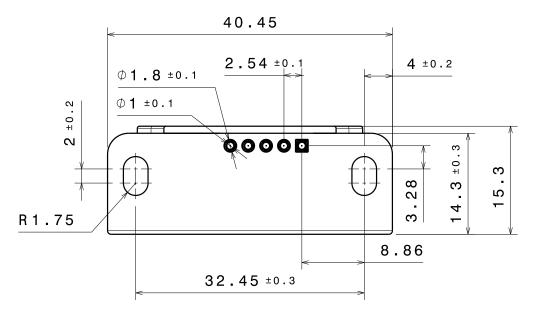
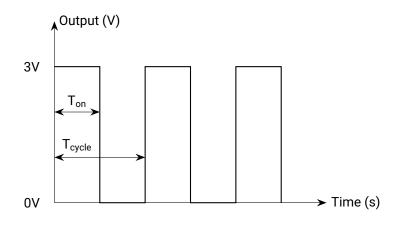
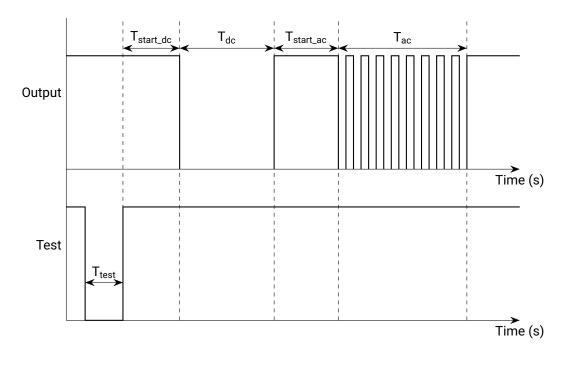



Figure 2: Footprint (bottom view - unit: mm)

Pinout

Pin Number	Symbol	Pin Type	Function
1	NC	Signal	Reserved
2	TEST	Input	Test input
3	OUT	Output	Output signal (3V logic)
4	VCC	Power	Power supply (5V)
5	GND	Power	Ground

Output Characteristics


Symbol	Value
T _{on}	0.1ms - 1ms
T _{cycle}	1ms

Output state

Duty	Meaning				
0%	DC alarm				
10%	AC+DC alarm ¹				
50%	AC alarm				
90%	Reserved ²				
100%	Normal condition				

 $^1\mbox{This}$ duty cycle may be used to indicate other errors $^2\mbox{Reserved}$ for internal check

Self-test sequence

Symbol	Min	Max
T _{test}	300ms	2s
T _{start_dc}		1s
T _{dc}		1s
T _{start_ac}		600ms
T _{start_ac}		600ms
T _{ac}		600ms

Specifications

Item	Performance Characteristics
Primary Rated Voltage	250 V
Primary Nominal Current	40/20 A Maximum (1 phase/3 phase)
Supply Voltage Range	4.75 – 5.25 V (5 V typical)
Maximum Input Voltage of Digital Output	Supply Voltage + 0.3 V
Maximum Sink Current of Digital Output	10 mA
Current Consumption	3 mA (at measurement 0 mA)
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-40°C to +85°C

Test Results

ESD Test

DC Detection Current within specifications after ESD test.

Parameter	Result
Electrostatic Discharge Voltage, Human-Body Model (HBl R = 1,500Ω, C = 100pF, U= ±2,000V	M) Passed
Electrostatic Discharge Voltage, Charged-Device Model (CDM) L	U=±800V Passed

EMC Test

DC Alarm and AC Alarm do not malfunction during noise stimulation.

Parameter	Condition	Result
IEC 61000-4-3	30 V/m,	Passed
Radiated, radio-frequency, electromagnetic field immunity	80 MHz – 1 GHz 80%	
	AM 1 kHz	
ISO 11452-2 (ALSE)	50 V/m	Passed
Electrical disturbances from narrowband radiated electro-	200 MHz – 800 MHz 80%	
magnetic energy	AM 1 kHz, 800 MHz – 2	
	GHz PM	
ISO 11452-4 (BCI)	100 mA	Passed
Electrical disturbances from narrowband radiated electro-	20 MHz – 200 MHz 80%	
magnetic energy	AM 1 kHz	

Dielectric Strength

IEC 61800-5-1:2007

Parameter	Condition	Values
UW, prim-sec	Impulse (1.2 μ s/50 μ s), PIN 1- vs insulated primary wire, 5	5500 Vrms
	pulse $ ightarrow$ polarity +, 5 pulse $ ightarrow$ polarity -	
Ud	Test voltage, 60 seconds PIN 1-8 vs insulated primary wire	1500 Vrms
U _{PDx1.5}	Partial discharge voltage, PIN 1-8 vs insulated primary wire	1200 Vrms
U _{PDx1.85}	Partial discharge voltage, PIN 1-8 vs insulated primary wire	1500 Vrms

IEC62752-2016

AC Test

Test case: 9.7.3.2 Verification of the correct operation in case of a steady increase of the residual current. Test setup:

- Use the setup shown in Figure 3.
- Function generator: Sin wave, 50Hz
- Increase amplitude manually (0.1mA step)
- When the DUT is alarm, record the meter's value

Test case: 9.7.3.3 Verification of the correct operation at closing on residual current. Test setup:

- Use the setup shown in Figure 3.
- Function generator: Sin wave, 50Hz
- The test current calibrated at 30, 60, or 150mA
- Turn off the output of function generator, then turn on again
- Record the break time

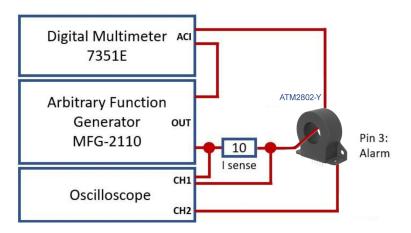


Figure 3: Test setup for 9.7.3.2, 9.7.3.3 and 9.7.4.2

Test case: 9.7.3.5 Verification of the correct operation in case of sudden appearance of residual current between 5A and 100A.

Test setup:

• Use the setup shown in Figure 4.

- The test current calibrated at 5, 10, 20, 50, 100A
- Turn on the output
- Record the break time

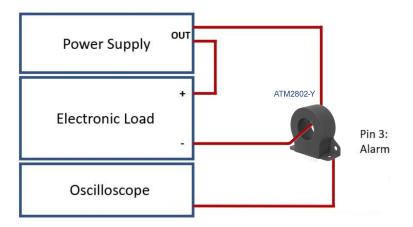


Figure 4: Test setup for 9.7.3.5

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
	9.7.3.2	15mA < I < 30mA	19.56mA	19.59mA	19.59mA	19.59mA	19.59mA	Pass
Idn	9.7.3.3	t < 300ms	66ms	73ms	69ms	70ms	90ms	Pass
2 ×Idn	9.7.3.3	t < 150ms	46ms	45ms	45ms	44ms	44ms	Pass
5 ×Idn	9.7.3.3	t < 40ms	5.6ms	5.2ms	8.8ms	6.4ms	8ms	Pass
5A	9.7.3.5	t < 40ms	2.2ms	2.5ms	3.9ms	2.4ms	3ms	Pass
10A	9.7.3.5	t < 40ms	4.2ms	2.9ms	2.9ms	1.9ms	3.3ms	Pass
20A	9.7.3.5	t < 40ms	4.5ms	2.7ms	3.2ms	3ms	3.1ms	Pass
50A	9.7.3.5	t < 40ms	2.5ms	1.9ms	2.2ms	2.4ms	2.6ms	Pass
100A	9.7.3.5	t < 40ms	2.7ms	1.8ms	1.7ms	2ms	2.4ms	Pass

Pulsating DC Test

Test case: 9.7.4.2 Verification of the correct operation in case of a continuous raise of a residual pulsating direct current.

Test setup:

- Use the setup shown in Figure 3.
- · Function generator: pulsating direct current as shown in Figure 5
- Increase amplitude manually (0.1mA step)
- When the DUT is alarm, record the ammeter's value [rms]
- · Measure similarly in the case of two phases

• Repeat with α =90 and α =135

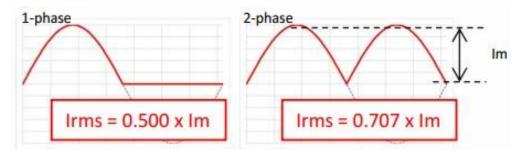


Figure 5: Output waveform for 9.7.4.2, α =0

Test case: 9.7.4.3 Verification of the correct operation in case of suddenly appearing residual pulsating direct currents with or without being superimposed by a smooth direct current.

Test setup for without DC case:

- Use the setup shown in Figure 3.
- Function generator: pulsating direct current α =0 as shown in Figure 5
- Increase amplitude manually (0.1mA step)
- When the DUT is alarm, record the ammeter's value [rms]
- · Measure similarly in the case of two phases
- Repeat with α =90 and α =135

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
1 phase, α =0	9.7.4.2	4.2mA - 42mA	7.3mA	7.1mA	7.2mA	7.2mA	7.1mA	Pass
2 phase, α =0	9.7.4.2	4.2mA - 42mA	4.7mA	4.7mA	4.6mA	4.65mA	4.6mA	Pass
1 phase, α =90	9.7.4.2	6.3mA - 42mA	7.5mA	7.2mA	7.15mA	7.3mA	7.3mA	Pass
2 phase, α =90	9.7.4.2	6.3mA - 42mA	5.3mA	5.2mA	5.4mA	5.2mA	5.1mA	Pass
1 phase, α =135	9.7.4.2	3.3mA - 42mA	11.2mA	11.3mA	11mA	11.1mA	11.2mA	Pass
2 phase, α =135	9.7.4.2	3.3mA - 42mA	9.3mA	9.1mA	9.3mA	9.3mA	9.2mA	Pass
ldn×1.4	9.7.4.3	t < 300ms	29ms	27ms	27.2ms	28ms	28ms	Pass
$2 \times Idn \times 1.4$	9.7.4.3	t < 150ms	6.2ms	6.8ms	6.8ms	6.8ms	6.8ms	Pass
5×Idn ×1.4	9.7.4.3	t < 40ms	5.6ms	7ms	6.5ms	6ms	5.1ms	Pass
ldn×1.4	9.7.4.3	t < 300ms	24.8ms	25ms	24ms	24.8ms	25ms	Pass
+ DC6mA	9.7.4.3	1 < 3001115	24.01115	20115	241115	24.01115	231115	F a 5 5
$2 \times Idn \times 1.4$	9.7.4.3	t < 150ms	7.3ms	6.3ms	7.8ms	6.8ms	7ms	Pass
+ DC6mA	9.7.4.5		7.51115	0.5115	7.0115	0.0115	/1115	газэ
5×Idn×1.4	9.7.4.3	t < 40ms	5.6ms	6.1ms	5.5ms	5.8ms	5.8ms	Pass
+ DC6mA	9.7.4.5	1 - 40115	5.0115	0.1115	5.5115	5.0115	5.0115	1 035

Composite Current

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
50/60Hz + 1kHz	9.7.5.2	15mA - 42mA	26.73mA	27mA	26.97mA	26.79mA	26.91mA	Pass
$5 \times Idn \times 1.4$	9.7.5.2	t < 40ms	11.3ms	10.5ms	10.7ms	11.1ms	10.1ms	Pass

Smooth DC

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
	9.7.6	3mA - 6mA	4.4mA	4.4mA	4.6mA	4.4mA	4.5mA	Pass
6mA	9.7.6	t < 10s	290ms	290ms	313ms	298ms	303ms	Pass
60mA	9.7.6	t < 30ms	18.6ms	18.4ms	18.8ms	18.3ms	19.1ms	Pass
300mA	9.7.6	t < 40ms	8.2ms	8.0ms	7.6ms	8.2ms	7.8ms	Pass

DC Current from Rectifying Circuits (2-phase)

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
	9.7.11	3.5mA - 7mA	4.95mA	4.86mA	4.92mA	4.89mA	4.86mA	Pass
2×Idn	9.7.11	t < 300ms	23.6ms	21.6ms	21.2ms	21.6ms	22.4ms	Pass
4×ldn	9.7.11	t < 150ms	7.6ms	10.6ms	7.2ms	7ms	7.3ms	Pass
10×ldn	9.7.11	t < 40ms	10ms	4.8ms	3.8ms	4.2ms	7.2ms	Pass
5A	9.7.11	t < 40ms	2.2ms	2.8ms	2.6ms	2.2ms	2.7ms	Pass
10A	9.7.11	t < 40ms	2.5ms	3.0ms	3.2ms	2.8ms	2.1ms	Pass
20A	9.7.11	t < 40ms	2.0ms	1.8ms	2.0ms	2.1ms	2.4ms	Pass
50A	9.7.11	t < 40ms	1.9ms	2.0ms	2.7ms	2.5ms	2.0ms	Pass

DC Current from Rectifying Circuits (3-phase)

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
	9.7.12	3.5mA - 6.2mA	3.7mA	3.6mA	3.6mA	3.7mA	3.7mA	Pass
2×Idn	9.7.12	t < 300ms	18ms	19.6ms	18.4ms	19.2ms	18ms	Pass
4×ldn	9.7.12	t < 150ms	21ms	21.6ms	22ms	22ms	22.8ms	Pass
10×ldn	9.7.12	t < 40ms	6ms	5.2ms	5.2ms	5.6ms	5.2ms	Pass
5A	9.7.12	t < 40ms	2.3ms	2.5ms	2.3ms	2.6ms	2.4ms	Pass
10A	9.7.12	t < 40ms	2.3ms	2.4ms	2.2ms	2.8ms	2.1ms	Pass
20A	9.7.12	t < 40ms	2.2ms	1.8ms	2.5ms	2.1ms	2.4ms	Pass
50A	9.7.12	t < 40ms	1.8ms	2.1ms	2.5ms	2.5ms	2.1ms	Pass

Short Circuit

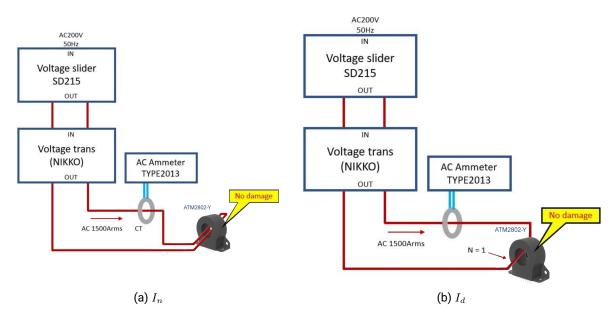


Figure 6: Test setup for 9.9.2.2, 9.9.2.3, 9.9.2.4

Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
In: 320A	9.9.2.2	No	No	No	No	No	No	Pass
ld: 300mA	9.9.2.2	damage	damage	damage	damage	damage	damage	Pass
In: 320A	9.9.2.3	No	No	No	No	No	No	Pass
III. 320A	9.9.2.3	damage	damage	damage	damage	damage	damage	Pd55
In: 1500A	n: 1500A 9.9.2.4	No	No	No	No	No	No	Pass
III. 1500A	9.9.2.4	damage	damage	damage	damage	damage	damage	Pd55
Id: 1500A	9.9.2.4	No	No	No	No	No	No	Pass
IU. 1500A	9.9.2.4	damage	damage	damage	damage	damage	damage	rass

Surge Currents

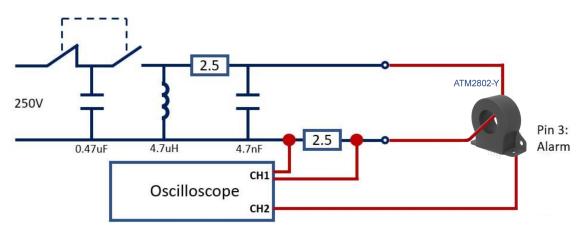
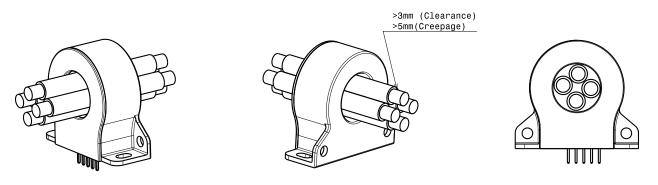
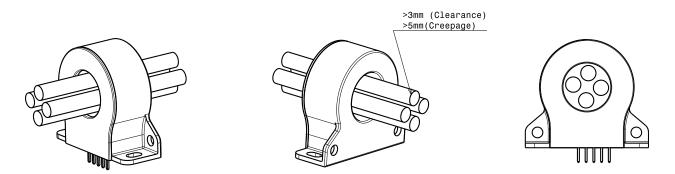


Figure 7: Test setup for 9.16


Condition	IEC62752	Condition	#1	#2	#3	#4	#5	Result
25Ap,100kHz	9.16	NOT trip	NOT trip	NOT trip	NOT trip	NOT trip	NOT trip	Pass


EMI

Recommended Wire Configurations

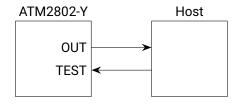
In Case of Insulated Wire

Three phase system < 480V

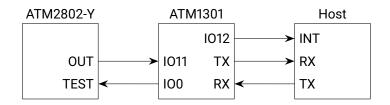
Reinforced insulation, insulation material group III, pollution degree 2, altitude < 5,000 m and overvoltage category II. Please take enough creepage distance between each pin.

Soldering Process

Soldering Process: Manual Soldering Soldering Temperature: 360 ± 10 °C Soldering Time: 3 ± 1 s


Packaging

Part Name	Packaging Type	Pieces Per Box
ATM2802-Y	Tray	100


The product is packed in anti-static trays.

Recommended Circuit

Typical circuit

Recommended circuit with ATM1301 module

Ratings

	Min	Typical	Max	Response time
DC Detection Current (mA)		4.5	6	1s at 6mA
				100ms at 60mA
				15ms at 300mA
AC Detection Current (mArms)	15	17.5	30	200ms at 30mA
				60ms at 60mA
				15ms at 150mA

Handling Precautious

Precautions for Product Storage

Current sensors should be stored in normal working environments. While the sensors are quite robust in other environments, exposure to high temperatures, high humidity, corrosive atmospheres, and long-term storage degrade solderability.

AMBO recommends that maximum storage temperature not exceed 85°C and atmospheres should be free of chlorine and sulfur-bearing compounds. Temperature fluctuations should be minimized to avoid condensation on the parts. Avoid storage near strong magnetic fields, as they can magnetize the product and cause its characteristics to change. Limit ambient magnetic fields to 50e or less.

For optimized solderability, the stock of current sensors should be used within 12 months of receipt.

Before Using Fluxgate-Based Residual Current Sensors

- Do NOT drop or apply any other mechanical stress, as such stresses may change performance characteristics.
- Do NOT exceed 260°C for 10 seconds when soldering. This is the maximum heat resistance grade of these sensors. Use a low-corrosion type flux when soldering.
- Do NOT allow strong static electricity near the sensor, as the circuit uses ICs. Static electricity can cause damage. Take static electricity precautions when handling.
- The case is Insulation Materials Group III. When designing the primary wire, be careful of clearance and creepage distance from the input/output terminal.

Disclaimer

All product specific cations, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AMBO Technology ("AMBO") knowledge of typical operating conditions for such applications, but are not intended to constitute – and AMBO specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AMBO with reference to the use of AMBO's products is given gratis, and AMBO assumes no obligation or liability for the advice given or results obtained.

Although AMBO designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

AMBO is a registered trademark of AMBO Technology.

AMBO